Tag - Energy Storage

Entries feed - Comments feed

-

OPPORTUNITY: The Innovation Factory Redux

OPPORTUNITY: The Innovation Factory Redux

shop2.png

OPPORTUNITY: The Innovation Factory Redux

You can invest in our growth. You finance one of these new facilities and you get a percentage of the profits.

Sponsor this auxiliary-expansion project and reap the rewards of a percentage of all of the IP profits from the facility that you sponsor. Be part of an actual "idea and product factory"!

shop1.png

BE PART OF:

  • 50 engineers and development specialists
  • 10,000 square feet of the finest pre-volume engineering and build shops in the world
  • At least one new invention filed with the U.S. Government every three days
  • The finest CNC, lith, machining, sintering, stereolith, shop equipment
  • Multiple government contracts engaged at all times
  • The greatest showcase of bleeding edge prototypes for manufacturing partnerships
  • Faster and better G&A than any larger competitor
  • A record-breaking volume of patents, fully operational pre-volume units and engineering plans

CONTACT US to inquire about co-sponsoring an Innovation Factory Redux

shop3.png

shop4.png

shop5.png

shop7.png

 

SHOP SHOTS FROM SOME OF SCOTT'S SHOP SPACES:

STUDIO-pict0003-39-.jpg

3D-CAMERA.png

410883_orig.jpg

SHOP2.png

SHOP5.png

SHOP6.png

5711182_orig.png

3495875_orig.jpg

IMG_0959.JPG

IMG_0941.JPG

IMG_0944.JPG

IMG_0945.JPG

IMG_0948.JPG

IMG_0952.JPG

SWHWORIG_047.jpg

IMG_0967.JPG

SVB.gif

IMG_0955.JPG

HELP POWER A TEAM OF THE BEST AND THE BRIGHTEST CREATORS IN THE WORLD:

TEAM1.png

Share

-

INFO: How Scott's Innovation Teams Work

Want to See Scott Operates his Team? This Article Provides a Great Overview:

Innovation and invention.png

THE INNOVATION DREAM TEAM: OPPOSITES SUCCEED

Jeanne M. Liedtka and Randy Salzman 

As an increasingly popular approach to business innovation, the crux of design thinking is that it embraces both creativity and analytical thinking to solve problems; two sides of the design thinking coin, both are essential to the design thinking process.

As such, one key to design thinking is for designers to empathize with those who see the world through what Stanford psychologist Carol Dweck calls a “fixed mindset” — many of whom may be corporate or bureaucratic managers — and vice versa. Having learned at an early age that “life’s a test, try not to look stupid,” the fixed mindseter (whom we call “George”) usually digs deeply into a specialty and masters the intricacies of it, while designer-types, who usually enjoy what Dweck calls a “growth mindset,” see life as a journey of discovery and, therefore, have developed a more diverse repertoire.

A Potential Dream Team

There is a natural tension between these two mindsets, as one usually sticks to the same silo, mastering details and becoming reticent about disruptive change, and the other (whom we call “Geoffrey”) bounces in and out of silos, easily bored with those same intricacies and excited by the weird and the new. Like an exhilarating relationship, the smart Geoffrey and smart George become the “opposites who attract,” instead of the antithetical couples who get bogged down in their differences. Keeping the “creative types” and the “numbers people” on the same wavelength produces great ideas firmly anchored in the real world because Geoffreys have the propensity to embrace innovative ideas and Georges have the wisdom to devise tests for managing — not avoiding — any risks associated with Geoffreys’ imagined futures.

Geoffrey’s Turf vs. George’s Turf

The Geoffrey personality dominates in what we call the front end of design thinking, the What is and What if questions, and George’s natural home turf is in the back end, What wows and What works. If George withholds his natural skepticism until several of Geoffrey’s ideas are napkin pitched (when the organizational case for any new idea begins analysis), he is crucial for not allowing pie-in-the-sky ideas to overcome steely-eyed reality thinking. Too often, upper management can be easily awed by creative types and forget that the Geoffreys of the world, highly invested in their “brilliant” ideas, can become blind to any potential flaws. Identifying promising ideas is Geoffrey’s turf; ensuring that the promise is real is George’s.

Together, this is a formidable team. Opposed, this is no team at all. And design thinking, as practiced in the four-question, 15-step model, provides tools and methods for drawing the best of both personalities — whether that personality is literally two separate individuals or two aspects of the same human. One powerful tool is the methodology itself: When a George feels insecure during divergent “If anything were possible” thinking, he is still reassured he’s following a proven methodology and placated by checking off another box in that methodology. Other times, when the team needs to coalesce around design criteria, or assumption testing, or even very early in the process when teams decide whether design thinking is a solid approach for addressing their challenges, George’s attention to detail provides the foundation for Geoffrey’s creative thought.

Empathy Is Essential

Most design thinkers are Geoffreys and, like all humans, can face difficulty understanding others with different worldviews or mindsets. What seems simplicity itself to that Geoffrey personality might seem ridiculous to a George who may — because of his world view — rarely stick his hand up and chance being perceived stupid. The four-question methodology has Geoffreys all but begging Georges to expose flaws — at the right time and place, which is after What if creativity and before the expenditure of major dollars and resources when an organization pilots any new future.

A successful design thinker can use George and Geoffrey cooperation to truly empathize — different than sympathize or judge — with George. George is not stupid, or evil, or a “bean counter” who needs enlightened compassion, he’s rather essential to success because he helps Geoffrey recognize, and address, assumptions. He digs out the details that trip up even the best of ideas, and he does so after the ideas develop but while there is still time to solve those issues, not after Geoffrey has convinced the boss to turn over the checkbook — putting, of course, everyone’s necks on the line.

Jeanne M. Liedtka and Randy Salzman are authors of the upcoming book Design Thinking for the Greater Good: Innovation in the Social Sector (Columbia Business Press), a study of design-led innovation projects in government and social sectors.

Share

-

ENERGY: New catalyst found for clean energy fuel

energystorage2.png

Scott's patents have a new opportunity...

New catalyst found for clean energy fuel

 by Colin Poitras
 
 
A team of UConn chemists led by professors Steven Suib and James Rusling has developed a new material that could make hydrogen capture more commercially viable and provide a key element for a new generation of cheaper, light-weight hydrogen fuel cells.
 

The new metal-free catalyst uses carbon graphene nanotubes infused with sulfur. Hydrogen is the most abundant element in the universe and a promising source for clean energy. But producing high-grade hydrogen is an expensive and energy-consuming process. Often, the energy spent extracting hydrogen is worth more than the it produces. Finding a cheaper and more efficient way of capturing hydrogen would go a long way toward the creation of a sustainable hydrogen economy, and would help reduce the world's reliance on fossil fuels.

"We've made a material that looks pretty good," says Suib, Board of Trustees Distinguished Professor of Chemistry and director of UConn's Institute of Materials Science. "Our results show that this material is more than competitive with the state-of-the-art materials quoted in literature, and exceptionally good for the reactions we need." Current hydrogen production uses intense heat to separate hydrogen from hydrocarbons found in crude oil. But the resulting hydrogen isn't very pure, and byproducts must be scrubbed out. An alternate process, capturing hydrogen in water, is cleaner and more sustainable, but it too has limitations.

Electrocatalysts involved in this process are usually made of like platinum and iridium. But they are very expensive, making the commercialization of pure hydrogen fuels difficult. Finding a non-metal catalyst that has all of the electrochemical properties of the rare earth metals but can be made at a much reduced cost and still remain stable has been a goal of scientists for years. Suib and Rusling, an expert in electrochemistry, knew that sulfur-infused carbon graphene nanotubes were a potentially efficient non-metal catalyst for an . An oxygen reduction reaction, or ORR, happens when oxygen and are converted to water. The reaction is a key component of hydrogen-based fuel cells. Hydrogen gas used to power the cells passes through a catalyst, currently a corrosive-resistant metal like platinum, causing an oxygen reduction electrochemical reaction that creates energy and – as a byproduct – water.

 

But reversing that process – starting with water and extracting pure hydrogen from it, a procedure known as an oxygen evolution reaction – is much more of a challenge electrochemically. Suib and Rusling, working with a team of graduate students led by Ph.D. candidates Abdelhamid El-Sawy and Islam Mosa, decided to give it a shot.

The key, Suib says, was manipulating the sulfur and carbon atoms to create stable bonds and structures within the nanotubes, while also maintaining or improving the tubes' electrochemical potential so that it mirrored those found in the rare metals. "If you are going to make a hydrogen economy, you need to have new materials that do the same thing as the extremely expensive rare earth metals," says Suib. "But how do you get something that is cheap, durable, and stable enough to be scaled up to industry levels? That was our challenge."

The process developed in Suib's and Rusling's labs uses a dual doping procedure involving sulfur and benzyl disulfide treated at high heat. The researchers had to carefully add heteroatoms of sulfur at extremely low levels to strike the delicate balance needed to maintain usability and stability. Add too much sulfur and the sample would be unstable; not enough and it would be ineffective. Suib says the procedure for isolating hydrogen in water, in a very general way, is similar to trying to separate flour and sand after they've been mixed together thoroughly.

In the end, he says, the sulfur-doped nanotubes used much less energy in the chemical reaction process than other known processes, and were much more active and efficient catalysts than other known products. Most importantly, he points out, the sulfur-infused nanotubes are efficient for both separating from water and reducing oxygen into water. Materials with those dual properties are rare, he notes. "I was surprised, in the end, that it worked so well," Suib says, with a grin. "We thought it might work, but we didn't think it would work so well." Powerful transmission electron microscopes and scanning electron microscopes in UConn's Bioscience Electron Microscopy Lab, Institute of Materials Science, and new FEI Center for Advanced Microscopy and Materials Analysis were instrumental in helping researchers test and characterize the new material as it developed in the lab, Suib says.

Explore further: Inexpensive, efficient bi-metallic electrocatalysts may open floodgates for hydrogen fuel

More information: Abdelhamid M. El-Sawy et al. Controlling the Active Sites of Sulfur-Doped Carbon Nanotube-Graphene Nanolobes for Highly Efficient Oxygen Evolution and Reduction Catalysis, Advanced Energy Materials (2016). DOI: 10.1002/aenm.201501966

Read more at: http://phys.org/news/2016-05-catalyst-energy-fuel.html#jCp

energystar5.png

Share

TELECOM: Peer-To-Peer Mesh Network Technologies

The network technology that self-heals, saves billions and works anywhere on Earth

DEMOCRI-C 8.png

PEER-TO-PEER Network Technologies By Scott

GENERAL DESCRIPTION: A variety of projects which deploy collaborative device connection to support communications in challenged regions and disaster situations. Our teams have built, patented, deployed and delivered some of the first, and leading, peer to peer technology in the world. Some of our team technology has saved many, many lives. PHYSICS: Any device that can see an electromagnetic signal can often also send an electromagnetic signal. Many devices, today, can send and receive many types of electromagnetic signals, on the same device, some concurrently. This approach turns each device (ie: your smartphone or gamebox)  into its own broadcasting, reception and relay station. This technology needs no servers, towers or infrastructure to operate. Signals can range from audio, radio, light, IR, UV, vibration, laser, reflection, GPS interrupts, induction,  and other modifications of the I/O capabilities of the device. USES:  To support communications in challenged regions and disaster situations

demo1.jpg

demo2.jpgdemocri-C.png

DEMOCRI-C 8.png

DEMOCRI-C 2.png

DEMOCRI-C 4.png

http://www.vimeo.com/125658259

http://www.vimeo.com/125390652

http://www.vimeo.com/125390151

http://www.vimeo.com/125390152

http://www.vimeo.com/126023660

Related Past Projects:

Our team developed, engineered, produced, patented and marketed the software suite that has become one of the leading solutions sets in the intelligence, defense and emergency services arenas globally with over $300 Million invested in it’s production and deployment. One of the packages was distributed by Apple Computer with marketing personally accelerated by Steve Jobs in support of the Tsunami disaster. Other versions of the software have been used in refugee zones globally. When an illegal copycat version of our software failed in one region (Putting lives at risk), our authorized version kept on working. Our architecture has been proven to be unstoppable – against all odds. The full version STILL has yet to be hacked, in the field, by any known technology. It is STILL the least network- congestive, lowest-cost infrastructure, most ultra-secure, network solution in the world! A copy of the Movie: BIRTH OF A NATION was placed in the network flow out on the open web, using the technology, with a phrase imprinted across the center of the image. A $250,000.00 reward was offered to anyone who could provide a fully reassembled copy of the film with the imprinted image and certification headers intact. To this day: Nobody has been able to acquire that film sample off of the web, and reassemble it; proving the strength of the technology.
 

EMERGENCY REFUGEE COMMUNICATIONS FOR DISASTERS AND WAR-ZONES:

The CIA's associated group: IN-Q-TEL, invited us to show our technology to them and then delivered it, via their sister organization: New America Foundation, under the names Serval, Commotion, and other identifiers. Federal accounting agencies report that over $200M has been spent, to date, via State Department budgets, to deliver the system globally. Peer-to-peer data relaying is now the #1 software solution for troubled regions and disaster zones. 

Scott’s Original “Internet in a Suitcase” - Multiple U.S. Patents issued as "First-To-Invent"

1830043-1 (2).jpg

When inferior copy-cat versions failed, costing lives, our original version kept on working.

demo2.png

 

Using the technology, only 3 people's cell phones can cover San Francisco from ocean-to-bay, without the need for any servers.

--------------------------

FIRECHAT and other P2P Emergency Communications Systems Are Changing The World:


GET IT ON IOS STORES and at  https://play.google.com/store/apps/details?id=com.opengarden.firechat

The internet-free messaging app that’s sweeping the world

Apps use P2P combination of Bluetooth and WiFi

We already have Whatsapp, Facebook messenger, Snapchat etc, what makes FireChat different?
You can chat “off the grid”, even if there is no internet connection or mobile phone coverage. How is that possible? Instead of relying on a central server, it is based on peer-to-peer “mesh networking” and connects to nearby phones using Bluetooth and WiFi, with connectivity increasing as more people use it in an area. Firechat lets you talk anonymously Where might this be useful? According to FireChat, “on the beach or in the subway, at a big game or a trade show, camping in the wild or at a concert, or even travelling abroad, simply fire up the app with a friend or two and find out who else is there.” Seriously though. In Hong Kong mostly, where pro-democracy protesters are using it to communicate amid fears of network shutdowns. It’s also been used by Iraqis and Taiwanese students during their anti-Beijing Sunflower Movement. Aside from not being reliant on the internet (which some governments restrict), it is more clandestine and less traceable. You can also join group conversations How popular is FireChat? Over 100,000 people downloaded it in 24 hours in Hong Kong over the weekend, with the CEO saying that numbers are “booming” and up to 33,000 people were using the app at the same time.
CNN NEWS:

– Lasers, Video Projectors, Drones, P2P, coded-hashcodes, Mass-mouthing – GEEK VS. GEEK CYBERWAR! – Lasers write messages on buildings and project animations – Pocket video projectors show digital posters and movies on sides of buildings – Protestor’s drones monitor crowd safety – Entire New INTERNET, built by Democracy Protestors, does not use any corporate back-bone infrastructure. – Complex codes on Twitter and in TEXT messages have hidden meanings – Blinking laser dots on buildings use MORSE CODE – Arm Signals and hand signals use visual message relay – Hong Kong protesters in cyberwar

 

By Jeff Yang
PROTEST1.png

 A pro-democracy protester holds on to a barrier as he and others defend a barricade from attacks by rival protest groups in the Mong Kok district of Hong Kong on Saturday, October 4.

PROTEST2.png

 Pro-democracy student protesters pin a man to the ground after an assault during a scuffle with local residents in Mong Kok, Hong Kong on October 4. Friction persisted between pro-democracy protesters and opponents of their weeklong occupation of major Hong Kong streets, and police denied they had any connection to criminal gangs suspected of inciting attacks on largely peaceful demonstrators.

Protest3.png

 Pro-democracy protesters raise their arms in a sign of nonviolence as they protect a barricade from rival protest groups in the Mong Kok district of Hong Kong on October 4.
 
Students in the massive protests in Hong Kong want representative democracy
  • Jeff Yang: These protesters may be the most sophisticated and technologically savvy ever
  • He says Chinese authorities are blocking images and creating apps that trick protesters
  • Yang: Smartphone a great tool for populist empowerment but it can easily be used against us

Editor’s note: Jeff Yang is a columnist for The Wall Street Journal Online and can be heard frequently on radio as a contributor to shows such as PRI’s “The Takeaway” and WNYC’s “The Brian Lehrer Show.” He is the author of “I Am Jackie Chan: My Life in Action” and editor of the graphic novel anthologies “Secret Identities” and “Shattered.” The opinions expressed in this commentary are solely those of the author.

(CNN) — The massive protests in Hong Kong took an ugly turn on Friday when students pressing for representative democracy clashed with opponents, prompting a breakdown of talks aimed at defusing the crisis.

This negativity followed a week of remarkably peaceful civil disobedience in what has been dubbed the “Umbrella Revolution,” after the widely shared image of a man defiantly holding up an umbrella in a haze of police tear gas fired to disperse the tens of thousands of activists crowding the city’s main government and business thoroughfare, the region referred to as Central.

But protesters shrugged off the gas assault as if it had never happened. Behind the barricades, they studied for exams, coordinated the cleanup and recycling of trash generated by the crowd, and jerry-rigged guerrilla charging stations for the voluminous array of devices the demonstrators are using as part of the sophisticated war they’re waging on the virtual front, wielding the digital-age weapons of image feeds, live streaming video and ceaseless social media updates.

 
 
Jeff Yang

The Umbrella Revolution is hardly the first protest to harness the power of technology to coordinate activities and broadcast messages, but it’s almost certainly the most sophisticated.

Andrew Lih, a journalism professor at American University, discussed the infrastructure the activists have adopted in an article for Quartz, a system that incorporates fast wireless broadband, multimedia smartphones, aerial drones and mobile video projectors, cobbled together by pro-democracy geektivists like the ad-hoc hacker coalition Code4HK.

Given this remarkable show of force by the crowd under the Umbrella, it’s not surprising that Beijing has moved quickly to prevent transmissions from reaching the mainland, blocking Chinese access to Instagram, where images and videos from the demonstrations and police crackdowns are regularly being posted, and banning all posts on popular messaging sites like Weibo and WeChat carrying keywords that refer to the protests.

Activists have fought back by downloading the peer-to-peer “mesh messaging” app FireChat — which allows communication among nearby users even when centralized mobile services are unavailable by linking smartphones directly to one another via Bluetooth and wifi — in the hundreds of thousands, and by creating an elaborate system of numerical hashtags to stand in for forbidden terms.

For example, #689 is the codename for Hong Kong chief executive C.Y. Leung, referring to the number of votes he received in his selection as the region’s highest government representative, a scant majority of the 1,200 members of the the Communist Party-approved nominating committee. #8964 references Beijing’s brutal June 4, 1989, crackdown on student democracy activists in Tiananmen Square, which casts a looming shadow over the Occupy Central demonstrations.

These strategies seem to have prompted the Chinese authorities to resort to new and more insidious tactics. Links — seemingly posted by Code4HK — have begun popping up on social media, inviting users to download a new app that allows for secure coordination of protest activities.

Instead, clicking the link downloads a Trojan horse that gives its developers — presumed by some security experts to be “red hat’ hackers working with support from the Chinese government — open access to the messages, calls, contacts, location and even the bank information and passwords of those naive enough to download it.

That’s a harsh lesson not just for those living under authoritarian regimes, but for us citizens of nominally free and democratic societies as well.

The smartphone is by far the most formidable tool for populist empowerment ever invented, turning individual human beings into mobile broadcast platforms and decentralized mobs into self-organizing bodies. But it’s also jarringly easy for these devices to be used against us.

Here in the United States, revelations of the existence of massive government surveillance programs like the NSA’s PRISM have caused an uproar among digital libertarians. Likewise, criminal smartphone hacking and cloud cracking has led to the release of celebrity nude photos and sex videos, to the humiliation of those who thought them private.

The response from leading smartphone developers like Apple and Google has been to announce new methods of locking and encrypting information to make it harder for individuals, businesses or governments to gain access to our personal information.

But even as they add these fresh layers of security, they continue to extend the reach of these devices into our lives, with services that integrate frictionless financial transactions and home systems management into our smartphones, and wearable accessories that capture and transmit our very heartbeats.

Imagine how much control commercial exploiters, criminals — or overreaching law enforcement — might have if it gained access to all these features. The upshot is that we increasingly have to take matters into our own hands (and handsets), policing our online behavior and resisting the temptation to click on risky links.

It may be worth exploring innovative new tools that offer unblockable or truly secure alternatives to traditional communications, like the free VPN browser extension Hola, which evades global digital boundaries to Web access; open-source projects likeServal and Commotion, which are attempting to develop standards for mesh connectivity that route around the need for commercial mobile phone networks; and apps like RedPhone and Signal, which offer free, worldwide end-to-end encrypted voice conversations.

Most of these are works in progress. But as technology becomes ever more deeply embedded into our lifestyles, keeping our digital identities secure and private is becoming increasingly critical. And as the protests in Hong Kong have shown, the only solution may be to use technology to defend against technology — in other words, to fight fire with FireChat.

Read CNNOpinion’s new Flipboard magazine

Follow us on Twitter @CNNOpinion.

Join us on Facebook.com/CNNOpinion.


EXAMPLES OF TECHNOLOGY:

 

HTTP://p2p-Internet.weebly.com

 

IEEE Communications Magazine Publishes InterDigital Paper on P2P Communications

written by sstocker
 
InterDigital’s M2M team was recently published in the prestigious IEEE Communications Magazine with their article, “CA-P2P: Context-Aware Proximity-Based Peer-to-Peer Wireless Communications.” The work was co-authored by Chonggang Wang, Qing Li, Hongkun Li, Paul Russell, Jr. and Zhuo Chen, all engineers at InterDigital. The authors argue that CA-P2P may be a viable solution to both existing and new proximity-based services, including commercial applications such as advertising as well as emergency/disaster relief, when centralized networks may become unavailable.  Taking various levels of context into account during the P2P connection results in quick, efficient peer discovery and peer association. This will become increasingly important in the emerging fifth generation, with growing numbers of small cell and D2D communications becoming common. The paper delves into the benefits and challenges of CA-P2P and offers performance evaluations of simulations as evidence. Interested in learning even more? Visit our Vault, where you can search keywords such as peer-to-peer, device-to-device, D2D and IoT to find additional resources.

Share

-

MEDIA: VIRTUAL REALITY AND ENHANCED REALITY PROJECTS

Inventors of some of VR's first big hits!

oliver_stone__star_trek__scott_douglas_redmonds_vr_cave_287.jpg

Virtual Reality & Simulation/Visualization Technologies

Our team is known as “The Father’s of VR”. They built, and received U.S. Government patent awards on, the first immersive VR and augmented digital reality systems. Some of those systems were very expensive, as high as $2.5M at the time. Now you buy them in retail stores for under $600.
1846614_orig-2 (2).jpg2364818_orig-1 (2).jpg2507682_orig-2 (2).jpg
5269420_orig-2 (2).jpg
5925574_orig-2 (2).jpg8080457_orig-2 (2).jpg
4392985_orig-1 (2).jpg
         
MORE PROJECT TRACK RECORD VIDEO: Our patented ShapeWALL Tactile VR Surface Modules, Pods, Mobile devices and Modeling surfaces. From “Crazy Idea” to functional tool:

Our super-low cost VR googles:

7643362[1] (2).jpg

  

 If you can use tape, scissors, glue and pliers; you can, most likely, build some of these systems yourself. You already have the main part of the electronics by using your phone, tablet, computer or gamebox. You don’t even have to tear any electronics apart. You can make what you already have do dual purpose. As shown in this image, and in the time-stamps on our patent filings and issuance’s, we developed one of the first, if not the first, uses of a smartphone as the head-mounted display and position-sensor unit:   Discussion Of Parts Suppliers: Get a new back mount or get new lenses and swap them out when you need to. It is designed for hot swap lenses. Ideal lenses are the stacked Fresnel flat stamp 70-120 degree or the Erfle 65 degree lens, or the Plano Convex 92/95 degree lens. These lenses, or lens sets, can be purchased from various suppliers online for less than $30.00. You can hot dip the whole mount in truck bed coating or black electrical tape-it for various amounts of blackout/immersion of the unit. (A famous game company spent millions on legal research to determine that due to past litigation from users of other gaming VR headsets from other companies, not ours, one cannot legally sell you a fully blacked-out headset mount.) You choose your safest blackout/immersion level based on your use and safety parameters.


Past VR Work & Products Include:

The U.S. Government, after extensive investigation, awarded us multiple seminal patents as sole inventor of immersive virtual reality chambers, now known as “The Cave” or “The Holodeck”. This technology is used in the highest end tactical mission simulators and defense training systems:  We has consulted on Virtual Reality, Networked Simulation and wearable visualization technologies for a number of government and corporate clients. Here is an E! Entertainment Network segment about Scott’s work with the Production of Oliver Stone’s“Wild Palms”:

patent2.png

http://www.vimeo.com/125658258

CLICK EACH THUMBNAIL TO ENLARGE:

Share

TELECOM: LIGHT-CASTING EVEN WORKS IN OUTER SPACE

LIGHT.png

Inquire about acquiring the issued mobile device patents on this technology

SCOTT'S PATENTED LIGHT-CASTING(TM) EVEN WORKS IN OUTER SPACE

THE INTERNET: POWERED BY LIGHT!

In 1977, a group of technicians and engineers in San Francisco, California went up on top of a mountain in the middle of San Francisco, named Twin Peaks, and broadcast the internet across all of San Francisco, Oakland and Berkeley in Northern California. They did not use wires or radio waves. They used light.

Entrepreneur and technologist Scott Douglas Redmond ( http://www.scottdouglasredmond.com/ ) , and his team of brilliant engineers rigged up a system on the mountain designed to save time and money, but they soon discovered other advantages. The city of San Francisco gave him the mountain for nearly a week, during which he received a mayoral proclamation and the donation of an entire radio station and the main laser used in Star Wars for special effects.

What happens when you give a legion of engineers a whole mountain in the middle of San Francisco?

…They beam light, audio and video to over two million people….just for fun!

Take 148 crew, one mountain, a city center with 7 million people around it and more candle-power than many small cities have, and you get the first outdoor urban light networked experience for a whole city!

The event was viewed by millions but 1000 people interacted with it on the first public web, connected by light

 

You could see the event, hear the event on the radio, transduce audio from the light and transduce basic video from the light. It was one of the first mass broadcasts using light as the delivery platform. If you were close enough, you could feel the sound. Satellites could see the event. Mr. Redmond has now taken this technology to consumer pockets. He has built mini versions of his Lightcaster and has been issued multiple patents by the U.S. Government on cell phones networked by light. Redmond has offered the patents, engineering and manufacturing rights to any manufacturer who wishes to deliver the “lightphone” to the volume consumer market.

WAVEY GRAVY – THE MC IN THE FILM: “WOODSTOCK”, Keeping the crew fired up at one of the Twin Peaks lightcasting events


 

This kind of internet-by-light now has a name. It is often called Light-Fi or Li-Fi

Li-Fi (Light Fidelity) is a bidirectional, high speed and fully networked wireless communication technology similar to Wi-Fi. The term was coined by Harald Haas [1] and is a form of visible light communication and a subset of optical wireless communications (OWC) and could be a complement to RF communication (Wi-Fi or Cellular network), or even a replacement in contexts of data broadcasting. It is so far measured to be about 100 times faster than some Wi-Fi implementations, reaching speeds of 224 gigabits per second.[2]

It is wireless and uses visible light communication or infra-red and near ultraviolet (instead of radio frequency waves) spectrum, part of optical wireless communications technology, which carries much more information, and has been proposed as a solution to the RF-bandwidth limitations.[3]

Technology details

This OWC technology uses light from light-emitting diodes (LEDs) as a medium to deliver networked, mobile, high-speed communication in a similar manner to Wi-Fi.[4] The Li-Fi market is projected to have a compound annual growth rate of 82% from 2013 to 2018 and to be worth over $6 billion per year by 2018.[5]

Visible light communications (VLC) works by switching the current to the LEDs off and on at a very high rate,[6] too quick to be noticed by the human eye. Although Li-Fi LEDs would have to be kept on to transmit data, they could be dimmed to below human visibility while still emitting enough light to carry data.[7] The light waves cannot penetrate walls which makes a much shorter range, though more secure from hacking, relative to Wi-Fi.[8][9] Direct line of sight isn't necessary for Li-Fi to transmit a signal; light reflected off the walls can achieve 70 Mbit/s.[10][11]

Li-Fi has the advantage of being useful in electromagnetic sensitive areas such as in aircraft cabins, hospitals and nuclear power plants[citation needed] without causing electromagnetic interference.[8][9] Both Wi-Fi and Li-Fi transmit data over the electromagnetic spectrum, but whereas Wi-Fi utilizes radio waves, Li-Fi uses visible light. While the US Federal Communications Commission has warned of a potential spectrum crisis because Wi-Fi is close to full capacity, Li-Fi has almost no limitations on capacity.[12] The visible light spectrum is 10,000 times larger than the entire radio frequency spectrum.[13] Researchers have reached data rates of over 10 Gbit/s, which is much faster than typical fast broadband in 2013.[14][15] Li-Fi is expected to be ten times cheaper than Wi-Fi.[7] Short range, low reliability and high installation costs are the potential downsides.[5][6]

PureLiFi demonstrated the first commercially available Li-Fi system, the Li-1st, at the 2014 Mobile World Congress in Barcelona.[16]

Bg-Fi is a Li-Fi system consisting of an application for a mobile device, and a simple consumer product, like an IoT (Internet of Things) device, with color sensor, microcontroller, and embedded software. Light from the mobile device display communicates to the color sensor on the consumer product, which converts the light into digital information. Light emitting diodes enable the consumer product to communicate synchronously with the mobile device.[17][18]

History

Harald Haas, who teaches at the University of Edinburgh in the UK, coined the term "Li-Fi" at his TED Global Talk where he introduced the idea of "Wireless data from every light".[19] He is Chair of Mobile Communications at the University of Edinburgh and co-founder of pureLiFi.[20]

The general term visible light communication (VLC), whose history dates back to the 1880s, includes any use of the visible light portion of the electromagnetic spectrum to transmit information. The D-Light project at Edinburgh's Institute for Digital Communications was funded from January 2010 to January 2012.[21] Haas promoted this technology in his 2011 TED Global talk and helped start a company to market it.[22] PureLiFi, formerly pureVLC, is an original equipment manufacturer (OEM) firm set up to commercialize Li-Fi products for integration with existing LED-lighting systems.[23][24]

In October 2011, companies and industry groups formed the Li-Fi Consortium, to promote high-speed optical wireless systems and to overcome the limited amount of radio-based wireless spectrum available by exploiting a completely different part of the electromagnetic spectrum.[25]

A number of companies offer uni-directional VLC products, which is not the same as Li-Fi - a term defined by the IEEE 802.15.7r1 standardization committee.[26]

VLC technology was exhibited in 2012 using Li-Fi.[27] By August 2013, data rates of over 1.6 Gbit/s were demonstrated over a single color LED.[28] In September 2013, a press release said that Li-Fi, or VLC systems in general, do not require line-of-sight conditions.[29] In October 2013, it was reported Chinese manufacturers were working on Li-Fi development kits.[30]

In April 2014, the Russian company Stins Coman announced the development of a Li-Fi wireless local network called BeamCaster. Their current module transfers data at 1.25 gigabytes per second but they foresee boosting speeds up to 5 GB/second in the near future.[31] In 2014 a new record was established by Sisoft (a Mexican company) that was able to transfer data at speeds of up to 10Gbit/s across a light spectrum emitted by LED lamps.[32]

Standards

Like Wi-Fi, Li-Fi is wireless and uses similar 802.11 protocols; but it uses visible light communication (instead of radio frequency waves), which has much wider bandwidth.

One part of VLC is modeled after communication protocols established by the IEEE 802 workgroup. However, the IEEE 802.15.7 standard is out-of-date, it fails to consider the latest technological developments in the field of optical wireless communications, specifically with the introduction of optical orthogonal frequency-division multiplexing (O-OFDM) modulation methods which have been optimized for data rates, multiple-access and energy efficiency.[33] The introduction of O-OFDM means that a new drive for standardization of optical wireless communications is required.

Nonetheless, the IEEE 802.15.7 standard defines the physical layer (PHY) and media access control (MAC) layer. The standard is able to deliver enough data rates to transmit audio, video and multimedia services. It takes into account optical transmission mobility, its compatibility with artificial lighting present in infrastructures, and the interference which may be generated by ambient lighting. The MAC layer permits using the link with the other layers as with the TCP/IP protocol.[citation needed]

The standard defines three PHY layers with different rates:

  • The PHY I was established for outdoor application and works from 11.67 kbit/s to 267.6 kbit/s.

  • The PHY II layer permits reaching data rates from 1.25 Mbit/s to 96 Mbit/s.

  • The PHY III is used for many emissions sources with a particular modulation method called color shift keying (CSK). PHY III can deliver rates from 12 Mbit/s to 96 Mbit/s.[34]

The modulation formats recognized for PHY I and PHY II are on-off keying (OOK) and variable pulse position modulation (VPPM). The Manchester coding used for the PHY I and PHY II layers includes the clock inside the transmitted data by representing a logic 0 with an OOK symbol "01" and a logic 1 with an OOK symbol "10", all with a DC component. The DC component avoids light extinction in case of an extended run of logic 0's.[citation needed]

The first VLC smartphone prototype was presented at the Consumer Electronics Show in Las Vegas from January 7–10 in 2014. The phone uses SunPartner's Wysips CONNECT, a technique that converts light waves into usable energy, making the phone capable of receiving and decoding signals without drawing on its battery.[35][36] A clear thin layer of crystal glass can be added to small screens like watches and smartphones that make them solar powered. Smartphones could gain 15% more battery life during a typical day. This first smartphones using this technology should arrive in 2015. This screen can also receive VLC signals as well as the smartphone camera.[37] The cost of these screens per smartphone is between $2 and $3, much cheaper than most new technology.[38]

Philips lighting company has developed a VLC system for shoppers at stores. They have to download an app on their smartphone and then their smartphone works with the LEDs in the store. The LEDs can pinpoint where they are located in the store and give them corresponding coupons and information based on which aisle they are on and what they are looking at.[39]

Internet by light promises to leave Wi-Fi eating dust

By Laure Fillon


 

Barcelona (AFP) - Connecting your smartphone to the web with just a lamp -- that is the promise of Li-Fi, featuring Internet access 100 times faster than Wi-Fi with revolutionary wireless technology.

French start-up Oledcomm demonstrated the technology at the Mobile World Congress, the world's biggest mobile fair, in Barcelona. As soon as a smartphone was placed under an office lamp, it started playing a video.

The big advantage of Li-Fi, short for "light fidelity", is its lightning speed.

Laboratory tests have shown theoretical speeds of over 200 Gbps -- fast enough to "download the equivalent of 23 DVDs in one second", the founder and head of Oledcomm, Suat Topsu, told AFP.

"Li-Fi allows speeds that are 100 times faster than Wi-Fi" which uses radio waves to transmit data, he added.

The technology uses the frequencies generated by LED bulbs -- which flicker on and off imperceptibly thousands of times a second -- to beam information through the air, leading it to be dubbed the "digital equivalent of Morse Code".

View gallery

A delegate checks his smartphone at the Mobile World Congress in Barcelona, on February 22, 2016 (AF …

It started making its way out of laboratories in 2015 to be tested in everyday settings in France, a Li-Fi pioneer, such as a museums and shopping malls. It has also seen test runs in Belgium, Estonia and India.

Dutch medical equipment and lighting group Philips is reportedly interested in the technology and Apple may integrate it in its next smartphone, the iPhone7, due out at the end of the year, according to tech media.

With analysts predicting the number of objects that are connected to the Internet soaring to 50 million by 2020 and the spectrum for radio waves used by Wi-Fi in short supply, Li-Fi offers a viable alternative, according to its promoters.

"We are going to connect our coffee machine, our washing machine, our tooth brush. But you can't have more than ten objects connected in Bluetooth or Wi-Fi without interference," said Topsu.

Deepak Solanki, the founder and chief executive of Estonian firm Velmenni which tested Li-fi in an industrial space last year, told AFP he expected that "two years down the line the technology can be commercialised and people can see its use at different levels."

 

Li-Fi has been tested in France, Belgium, Estonia and India (AFP Photo/Sam Yeh)

- 'Still laboratory technology' -

Analysts said it was still hard to say if Li-Fi will become the new Wi-Fi.

"It is still a laboratory technology," said Frederic Sarrat, an analyst and consultancy firm PwC.

Much will depend on how Wi-Fi evolves in the coming years, said Gartner chief analyst Jim Tully.

"Wi-Fi has shown a capability to continuously increase its communication speed with each successive generation of the technology," he told AFP.

Li-Fi (Light-Fidelity) has reached speeds of over 200 Gbps (AFP Photo/Jung Yeon-Je)

Li-fi has its drawbacks -- it only works if a smartphone or other device is placed directly in the light and it cannot travel through walls.

This restricts its use to smaller spaces, but Tully said this could limit the risk of data theft.

"Unlike Wi-Fi, Li-Fi can potentially be directed and beamed at a particular user in order to enhance the privacy of transmissions," he said.

Backers of Li-Fi say it would also be ideal in places where Wi-Fi is restricted to some areas such as schools and hospitals.

"Li-fi has a place in hospitals because it does not create interference with medical materials," said Joel Denimal, head of French lighting manufacturer Coolight.

In supermarkets it could be used to give information about a product, or in museums about a painting, by using lamps placed nearby.

It could also be useful on aircraft, in underground garages and any place where lack of Internet


 


 

Read More about internet-by-light:

  • Tsonev, Dobroslav; Videv, Stefan; Haas, Harald (December 18, 2013). "Light fidelity (Li-Fi): towards all-optical networking". Proc. SPIE (Broadband Access Communication Technologies VIII) 9007 (2). doi:10.1117/12.2044649.

  • "pureVLC Ltd". Enterprise showcase. University of Edinburgh. Retrieved 22 October 2013.

  • Tsonev, D.; Sinanovic, S.; Haas, Harald (15 September 2013). "Complete Modeling of Nonlinear Distortion in OFDM-Based Optical Wireless Communication". IEEE Journal of Lightwave Technology 31 (18): 3064–3076. doi:10.1109/JLT.2013.2278675.

  1. Philips Creates Shopping Assistant with LEDs and Smart Phone, IEEE Spectrum, 18 February 2014, Martin LaMonica


 

 

READ THIS TECH DOC ON LIGHTCASTING: LiFi News.pdf

The information transfer from a laser satellite will be 90 to 100 times faster than the speed of a home Internet connection, and hours faster than from current satellites.

lightcasting.jpg

By Lonnie Shekhtman, Staff  

The European Space Agency Saturday launched a telecommunications satellite into space from Baikonur, Kazakhstan, that will use lasers to gather information from Earth observation satellites and quickly send it to sensors on Earth. The launch was part of a project known as European Data Relay System, or EDRS, and is the first of several of these data-transfer satellites that will be launched into space in the next several years. The ESA says that its new laser communications network will create what it calls a “SpaceDataHighway,” able to transfer information such as photos and videos from Earth observation satellites, drones, and even from the International Space Station down to Earth at a near real-time speed of 1.8 Gigabits per second. This is 90 to 100 times faster than the speed of a home Internet connection, says the ESA. Recommended: How well do you know the moon? Take our quiz! “EDRS is one of a kind and ESA’s most ambitious telecom programme to date, creating the means for an entirely new market in commercial satellite communications,” the agency said in an announcement. The faster transmission speed will be a boost to responders to disasters, pollution incidents, or illegal fishing or ocean piracy, for example, who could make better decisions with more immediate access to satellite data. "Some important shipping routes go through the North Pole region, where thick-ice [floes] can cause damage to vessels and even threaten human life," Magali Vaissiere, ESA's director of telecommunications told the BBC. "It's also an environment in constant motion which means that data that is two days old is not only unhelpful – it could even be unsafe,” she said, referring to the limitations of traditional radio satellites. Current satellites in low Earth orbit are able only to send back the data they collect during their 100-minute orbit time around Earth during a 10-minute window when they have line-of-sight with sensors on Earth. ESA’s first optical satellite will remain in a stationary position higher in space (same as television satellites) than other satellites, about 36,000 kilometers (nearly 23,000 miles) from the Earth's equator and above Europe. It will collect data from this location and relay it down to European ground stations, avoiding the time delay when other Earth observation satellites have to wait for “line of sight” with ground stations, says the ESA. EDRS laser technology was developed by German satellite builder Tesat, a subsidiary of French aerospace company Airbus at a cost of 500 million euros. The laser terminal will be tested over the coming weeks and months with ground stations in Germany, Belgium, and the United Kingdom, and is expected to be fully operational this summer, when it should start serving its first customer, the European Commission. Over the next several years, ESA plans to discharge two more laser-equipped satellites into space, one over Europe and the other over the Asia-Pacific region. Their biggest challenge, said ESA project manager Michael Witting, will be to get these laser terminals to talk to each other. "It's a laser beam; you have to point it accurately. It's the same as taking a torch in Europe and pointing at a two-euro coin in New York,” Mr. Witting told ArsTechnica. “That's one of the main challenges for developing the laser communication terminal, but also developing the satellite – it has to be stable enough to allow that kind of accuracy," he said. The rise of Wi-Fi and cellular data services made Internet access more convenient and ubiquitous. Now some of the high-speed backhaul data that powers Internet services looks set to go wireless, too.

AOPTIX.png

  Technology that uses parallel radio and laser links to move data through the air at high speeds, in wireless hops of up to 10 kilometers at a time, is in trials with three of the largest U.S. Internet carriers. It is also being rolled out by one telecommunications provider in Mexico, and is helping build out the Internet infrastructure of Nigeria, a country that was connected to a new high-capacity submarine cable from Europe last year. AOptix, the company behind the technology, pitches it as a cheaper and more practical alternative to laying new fiber optic cables. Efforts to dig trenches to install fiber in urban areas face significant bureaucratic and physical challenges. Meanwhile, many rural areas and developing countries lack the infrastructure needed to support fiber, says Chandra Pusarla, senior vice president of products and technology at AOptix. He says a faster way to install new capacity is to use his company’s wireless transmission towers to move data at two gigabits per second. Pusarla says the service is particularly attractive to wireless carriers, whose customers have growing appetites for mobile data. Many U.S. providers are currently scrambling to install fiber to replace the copper cables that still link up around half of all cellular towers, he says, but progress has been slow and costly. In the suburbs of New York City, the cost of installing a single kilometer of new fiber can be $800,000, says Pusarla. AOptix technology takes the form of a box roughly the size of a coffee table with an infrared laser peering out of a small window on the front, and a directional millimeter wave radio beside it. The two technologies form a wireless link with an identical box up to 10 kilometers away. A series of such connections can be daisy-chained together to make a link of any length. AOptix teamed up the laser and radio links to compensate for weaknesses with either technology used

Share

PORTFOLIO: CONSTRUCTION TECHNOLOGY PROJECTS

112745.JPG

Construction Technology Projects

Modern Construction Technology:

Scott built and donated the internet education centre for The Children's Garden youth center -
 
PIC00004.JPG
 
 

Share

INFO: Manufacturing Partnerships

PAGEOS.jpg

Manufacturing Partnerships

Is there a specific energy market your distribution group wishes to address with OEM and/or white-label targeting? We have on-line factory partners in South-East Asia, Mexico and The USA, ready, and able, to deliver your custom market orders. We can pre-stack and maxi-modularize your PAC's to fit your market sizing requirements. Simply post NRE costs with the well-known bank of your choice, or deliver a Factoring service guarantee certificate, and your DFM will begin 14 days later, or less. CONTACT US with your requirements document.

Share

-

ENERGY: Fuel Cell Capacity Set to Grow 11GW by 2026

Today, 8 percent of all U.S. electricity generation capacity comes from customer-sited CHP and fuel cells.

400x300bulb.png

US CHP and Fuel Cell Capacity Set to Grow 11GW by 2026

US CHP and Fuel Cell Capacity Set to Grow 11GW by 2026

Photo Credit: shutterstock.com

 
According to GTM Research’s latest report, CHP and Fuel Cells 2016-2026: Growth Opportunities, Markets and Forecast, 11 gigawatts of new customer-sited fuel-based generation will be deployed in the U.S. over the next decade. GTM Research forecasts that the cumulative U.S. CHP and fuel cell market will grow from 84 gigawatts today to 95 gigawatts by 2026. While distributed renewables get the majority of the distributed generation (DG) headlines, solar and wind are not the only customer-sited generation sources. Today, 8 percent of all U.S. electric generation capacity comes from customer-sited CHP and fuel cells. This is almost double that of the total U.S. wind capacity, and 10 times that of distributed solar. After a decade of limited growth due to regulatory uncertainties and a declining U.S. manufacturing sector, new incentives and corporate activity are priming the market for resumed growth. “What looks like a stagnant market on the surface is actually smoldering with a significant number of technology and fuel options, capable vendors and a new batch of customers who are ready to adopt fuel-based DG systems,” said Mei Shibata, lead author of the report. “The whole thing could light up again if implementation barriers are lowered and regulations are deemed sufficiently stable from a customer’s perspective.” FIGURE: U.S. CHP and Fuel Cell Market Forecast, 2016-2026 Source: CHP and Fuel Cells 2016-2026: Growth Opportunities, Markets and Forecast CHP adoption is increasingly driven by non-industrial customers, while corporations and data centers in a few select states continue to drive U.S. adoption of fuel cells. Today, four U.S. states make up 90 percent of all fuel cell installations: California, Connecticut, Delaware and New York.
FIGURE: Top Fuel Cell Applications in Major U.S. State Markets Source: CHP and Fuel Cells 2016-2026: Growth Opportunities, Markets and Forecast “Fuel-based DG has and will continue to play a significant role in the U.S. electricity system, as the U.S. grid infrastructure ages and the need for cleaner and affordable generation options increases,” says Shibata. “We may be close to a tipping point for the market to start growing again, but among new customer segments and applications.” *** For more information, download the report brochure here.
 

Share

INFO: Our Top In-House Skills List

Invention Team.png

OUR TOP SKILLS INCLUDE:

Analysis - Qualitative

Art Direction

Competitor Counter-Measures

Content Producing

Global Process Improvement

Invention

Operations

Product Creation and Development

Program Direction

Public Policy Operations

R&D

Social Media Development

Start-up venture C & D Positions

Strategic Planning

Which Are Supported By Our Experience In, and Aptitude For,:

3D Computer Graphics

Ad Traffic

Brand Management Marketing

Brand Management Sales

Business Analysis

Business Development

Business Solutions

Campaign Optimization

Client Relations

Collateral Management

Communications-Support

Congressional Research

Copy Writing

Corporate Operations

CRM

Customer Service Face-to-Face Support

Customer Service Frontline Support

Diplomacy

Display Advertising

DRM

e-Business

e-Commerce

Engineering Process/Process Control

Engineering Project Management

Engineering R & D

Event Coordination

Executive Management

Executive Planning

Face-to-Face Support

Federal and International Law Enforcement

Graphic Design Specialist

Graphics & Desktop Publishing

Intelligence Operations

IT Business Solutions

IT Corporate Trainer

Legal Patent / Trademark / Intellectual Property

Marketing Communicati