Tag - San Francisco Blues Festival

Entries feed - Comments feed

-

MANAGEMENT: LOGISTICS DIRECTION FOR LARGE PUBLIC PROGRAMS

We do BIG!

promoorig_707.jpg

Our teams have been engaged to produce and/or manage million square foot+ venues with hundreds of thousands of people. We layout the operation, stage the logistics, source all suppliers and infrastructure, run the operations, keep everyone safe and then disappear these entire "temporary cities" as if they were never there.

Here are a few samples of  past work for the community, organizations and sponsors: 

SFBLUES.jpg

San Francisco Blues Festival Logistics

We ran logistics for the San Francisco Blues Festival working with the Founder: Tom Mazzolini and the Co-Sponsors: The National Park Service.

BLUES.jpg

blues84.jpg

The San Francisco Blues Festival broke the record as the longest continuously operated American music festival in national Park service history.

db_Concert31 (3).jpg

http://www.vimeo.com/125657421

...To the top major events centre in the Bay Area with record-setting crowds and novel presentations, with production and operations by Scott, working for both The National Park Service and Fort Mason Center:

coke1.jpg

greatgettghr.jpg

promoorig_704.jpg

garagesale2.jpg

largest-garagesale.jpg

img149.jpg

   img150.jpg  
pressorig_237.jpg
 

Production Sets and Decorations for Mimi Farina for Bread and Roses -

img400.jpg
1157455_orig.png
 

 

Production Lead for THE GREAT GAMING HOUSE. One hundred theaters in the same building for an interactive walk-through venue about the game of life. Created by the founder or arena theater in America; author Kelly Yeaton.-

img668.jpg
img669.jpg
img670.jpg
 
img670 (2).jpg
img671.jpg
img672.jpg
img673.jpg
img677.jpg
 

 

Producer and designer of the promotional program for the San Francisco Symphony called: AMERICAN CLOUD -

img679 (2).jpg
 
bluloons (3).jpg
americancloud (2).jpg

Scott was the Creative Director for Showplace Square and assisted with tenant relations and produced the annual music spectacular -

promoorig_151.jpg

promoorig_260.jpg

 


For the Opening of Ramada's top hotel, Our crew were tasked with rappelling the building to install the world's largest ribbon and bow -

db_perfmc_art11 (3).jpg

db_parc55b1 (3).jpg

      parc55.jpg

-----------

PUT THE SAN FRANCISCO SYMPHONY OUT ON A PIER? NO PROBLEM:

pressorig_254.jpg

Share

-

TELECOM: LIGHT-CASTING EVEN WORKS IN OUTER SPACE

LIGHT.png

Inquire about acquiring the issued mobile device patents on this technology

SCOTT'S PATENTED LIGHT-CASTING(TM) EVEN WORKS IN OUTER SPACE

THE INTERNET: POWERED BY LIGHT!

In 1977, a group of technicians and engineers in San Francisco, California went up on top of a mountain in the middle of San Francisco, named Twin Peaks, and broadcast the internet across all of San Francisco, Oakland and Berkeley in Northern California. They did not use wires or radio waves. They used light.

Entrepreneur and technologist Scott Douglas Redmond ( http://www.scottdouglasredmond.com/ ) , and his team of brilliant engineers rigged up a system on the mountain designed to save time and money, but they soon discovered other advantages. The city of San Francisco gave him the mountain for nearly a week, during which he received a mayoral proclamation and the donation of an entire radio station and the main laser used in Star Wars for special effects.

What happens when you give a legion of engineers a whole mountain in the middle of San Francisco?

…They beam light, audio and video to over two million people….just for fun!

Take 148 crew, one mountain, a city center with 7 million people around it and more candle-power than many small cities have, and you get the first outdoor urban light networked experience for a whole city!

The event was viewed by millions but 1000 people interacted with it on the first public web, connected by light

 

You could see the event, hear the event on the radio, transduce audio from the light and transduce basic video from the light. It was one of the first mass broadcasts using light as the delivery platform. If you were close enough, you could feel the sound. Satellites could see the event. Mr. Redmond has now taken this technology to consumer pockets. He has built mini versions of his Lightcaster and has been issued multiple patents by the U.S. Government on cell phones networked by light. Redmond has offered the patents, engineering and manufacturing rights to any manufacturer who wishes to deliver the “lightphone” to the volume consumer market.

WAVEY GRAVY – THE MC IN THE FILM: “WOODSTOCK”, Keeping the crew fired up at one of the Twin Peaks lightcasting events


 

This kind of internet-by-light now has a name. It is often called Light-Fi or Li-Fi

Li-Fi (Light Fidelity) is a bidirectional, high speed and fully networked wireless communication technology similar to Wi-Fi. The term was coined by Harald Haas [1] and is a form of visible light communication and a subset of optical wireless communications (OWC) and could be a complement to RF communication (Wi-Fi or Cellular network), or even a replacement in contexts of data broadcasting. It is so far measured to be about 100 times faster than some Wi-Fi implementations, reaching speeds of 224 gigabits per second.[2]

It is wireless and uses visible light communication or infra-red and near ultraviolet (instead of radio frequency waves) spectrum, part of optical wireless communications technology, which carries much more information, and has been proposed as a solution to the RF-bandwidth limitations.[3]

Technology details

This OWC technology uses light from light-emitting diodes (LEDs) as a medium to deliver networked, mobile, high-speed communication in a similar manner to Wi-Fi.[4] The Li-Fi market is projected to have a compound annual growth rate of 82% from 2013 to 2018 and to be worth over $6 billion per year by 2018.[5]

Visible light communications (VLC) works by switching the current to the LEDs off and on at a very high rate,[6] too quick to be noticed by the human eye. Although Li-Fi LEDs would have to be kept on to transmit data, they could be dimmed to below human visibility while still emitting enough light to carry data.[7] The light waves cannot penetrate walls which makes a much shorter range, though more secure from hacking, relative to Wi-Fi.[8][9] Direct line of sight isn't necessary for Li-Fi to transmit a signal; light reflected off the walls can achieve 70 Mbit/s.[10][11]

Li-Fi has the advantage of being useful in electromagnetic sensitive areas such as in aircraft cabins, hospitals and nuclear power plants[citation needed] without causing electromagnetic interference.[8][9] Both Wi-Fi and Li-Fi transmit data over the electromagnetic spectrum, but whereas Wi-Fi utilizes radio waves, Li-Fi uses visible light. While the US Federal Communications Commission has warned of a potential spectrum crisis because Wi-Fi is close to full capacity, Li-Fi has almost no limitations on capacity.[12] The visible light spectrum is 10,000 times larger than the entire radio frequency spectrum.[13] Researchers have reached data rates of over 10 Gbit/s, which is much faster than typical fast broadband in 2013.[14][15] Li-Fi is expected to be ten times cheaper than Wi-Fi.[7] Short range, low reliability and high installation costs are the potential downsides.[5][6]

PureLiFi demonstrated the first commercially available Li-Fi system, the Li-1st, at the 2014 Mobile World Congress in Barcelona.[16]

Bg-Fi is a Li-Fi system consisting of an application for a mobile device, and a simple consumer product, like an IoT (Internet of Things) device, with color sensor, microcontroller, and embedded software. Light from the mobile device display communicates to the color sensor on the consumer product, which converts the light into digital information. Light emitting diodes enable the consumer product to communicate synchronously with the mobile device.[17][18]

History

Harald Haas, who teaches at the University of Edinburgh in the UK, coined the term "Li-Fi" at his TED Global Talk where he introduced the idea of "Wireless data from every light".[19] He is Chair of Mobile Communications at the University of Edinburgh and co-founder of pureLiFi.[20]

The general term visible light communication (VLC), whose history dates back to the 1880s, includes any use of the visible light portion of the electromagnetic spectrum to transmit information. The D-Light project at Edinburgh's Institute for Digital Communications was funded from January 2010 to January 2012.[21] Haas promoted this technology in his 2011 TED Global talk and helped start a company to market it.[22] PureLiFi, formerly pureVLC, is an original equipment manufacturer (OEM) firm set up to commercialize Li-Fi products for integration with existing LED-lighting systems.[23][24]

In October 2011, companies and industry groups formed the Li-Fi Consortium, to promote high-speed optical wireless systems and to overcome the limited amount of radio-based wireless spectrum available by exploiting a completely different part of the electromagnetic spectrum.[25]

A number of companies offer uni-directional VLC products, which is not the same as Li-Fi - a term defined by the IEEE 802.15.7r1 standardization committee.[26]

VLC technology was exhibited in 2012 using Li-Fi.[27] By August 2013, data rates of over 1.6 Gbit/s were demonstrated over a single color LED.[28] In September 2013, a press release said that Li-Fi, or VLC systems in general, do not require line-of-sight conditions.[29] In October 2013, it was reported Chinese manufacturers were working on Li-Fi development kits.[30]

In April 2014, the Russian company Stins Coman announced the development of a Li-Fi wireless local network called BeamCaster. Their current module transfers data at 1.25 gigabytes per second but they foresee boosting speeds up to 5 GB/second in the near future.[31] In 2014 a new record was established by Sisoft (a Mexican company) that was able to transfer data at speeds of up to 10Gbit/s across a light spectrum emitted by LED lamps.[32]

Standards

Like Wi-Fi, Li-Fi is wireless and uses similar 802.11 protocols; but it uses visible light communication (instead of radio frequency waves), which has much wider bandwidth.

One part of VLC is modeled after communication protocols established by the IEEE 802 workgroup. However, the IEEE 802.15.7 standard is out-of-date, it fails to consider the latest technological developments in the field of optical wireless communications, specifically with the introduction of optical orthogonal frequency-division multiplexing (O-OFDM) modulation methods which have been optimized for data rates, multiple-access and energy efficiency.[33] The introduction of O-OFDM means that a new drive for standardization of optical wireless communications is required.

Nonetheless, the IEEE 802.15.7 standard defines the physical layer (PHY) and media access control (MAC) layer. The standard is able to deliver enough data rates to transmit audio, video and multimedia services. It takes into account optical transmission mobility, its compatibility with artificial lighting present in infrastructures, and the interference which may be generated by ambient lighting. The MAC layer permits using the link with the other layers as with the TCP/IP protocol.[citation needed]

The standard defines three PHY layers with different rates:

  • The PHY I was established for outdoor application and works from 11.67 kbit/s to 267.6 kbit/s.

  • The PHY II layer permits reaching data rates from 1.25 Mbit/s to 96 Mbit/s.

  • The PHY III is used for many emissions sources with a particular modulation method called color shift keying (CSK). PHY III can deliver rates from 12 Mbit/s to 96 Mbit/s.[34]

The modulation formats recognized for PHY I and PHY II are on-off keying (OOK) and variable pulse position modulation (VPPM). The Manchester coding used for the PHY I and PHY II layers includes the clock inside the transmitted data by representing a logic 0 with an OOK symbol "01" and a logic 1 with an OOK symbol "10", all with a DC component. The DC component avoids light extinction in case of an extended run of logic 0's.[citation needed]

The first VLC smartphone prototype was presented at the Consumer Electronics Show in Las Vegas from January 7–10 in 2014. The phone uses SunPartner's Wysips CONNECT, a technique that converts light waves into usable energy, making the phone capable of receiving and decoding signals without drawing on its battery.[35][36] A clear thin layer of crystal glass can be added to small screens like watches and smartphones that make them solar powered. Smartphones could gain 15% more battery life during a typical day. This first smartphones using this technology should arrive in 2015. This screen can also receive VLC signals as well as the smartphone camera.[37] The cost of these screens per smartphone is between $2 and $3, much cheaper than most new technology.[38]

Philips lighting company has developed a VLC system for shoppers at stores. They have to download an app on their smartphone and then their smartphone works with the LEDs in the store. The LEDs can pinpoint where they are located in the store and give them corresponding coupons and information based on which aisle they are on and what they are looking at.[39]

Internet by light promises to leave Wi-Fi eating dust

By Laure Fillon


 

Barcelona (AFP) - Connecting your smartphone to the web with just a lamp -- that is the promise of Li-Fi, featuring Internet access 100 times faster than Wi-Fi with revolutionary wireless technology.

French start-up Oledcomm demonstrated the technology at the Mobile World Congress, the world's biggest mobile fair, in Barcelona. As soon as a smartphone was placed under an office lamp, it started playing a video.

The big advantage of Li-Fi, short for "light fidelity", is its lightning speed.

Laboratory tests have shown theoretical speeds of over 200 Gbps -- fast enough to "download the equivalent of 23 DVDs in one second", the founder and head of Oledcomm, Suat Topsu, told AFP.

"Li-Fi allows speeds that are 100 times faster than Wi-Fi" which uses radio waves to transmit data, he added.

The technology uses the frequencies generated by LED bulbs -- which flicker on and off imperceptibly thousands of times a second -- to beam information through the air, leading it to be dubbed the "digital equivalent of Morse Code".

View gallery

A delegate checks his smartphone at the Mobile World Congress in Barcelona, on February 22, 2016 (AF …

It started making its way out of laboratories in 2015 to be tested in everyday settings in France, a Li-Fi pioneer, such as a museums and shopping malls. It has also seen test runs in Belgium, Estonia and India.

Dutch medical equipment and lighting group Philips is reportedly interested in the technology and Apple may integrate it in its next smartphone, the iPhone7, due out at the end of the year, according to tech media.

With analysts predicting the number of objects that are connected to the Internet soaring to 50 million by 2020 and the spectrum for radio waves used by Wi-Fi in short supply, Li-Fi offers a viable alternative, according to its promoters.

"We are going to connect our coffee machine, our washing machine, our tooth brush. But you can't have more than ten objects connected in Bluetooth or Wi-Fi without interference," said Topsu.

Deepak Solanki, the founder and chief executive of Estonian firm Velmenni which tested Li-fi in an industrial space last year, told AFP he expected that "two years down the line the technology can be commercialised and people can see its use at different levels."

 

Li-Fi has been tested in France, Belgium, Estonia and India (AFP Photo/Sam Yeh)

- 'Still laboratory technology' -

Analysts said it was still hard to say if Li-Fi will become the new Wi-Fi.

"It is still a laboratory technology," said Frederic Sarrat, an analyst and consultancy firm PwC.

Much will depend on how Wi-Fi evolves in the coming years, said Gartner chief analyst Jim Tully.

"Wi-Fi has shown a capability to continuously increase its communication speed with each successive generation of the technology," he told AFP.

Li-Fi (Light-Fidelity) has reached speeds of over 200 Gbps (AFP Photo/Jung Yeon-Je)

Li-fi has its drawbacks -- it only works if a smartphone or other device is placed directly in the light and it cannot travel through walls.

This restricts its use to smaller spaces, but Tully said this could limit the risk of data theft.

"Unlike Wi-Fi, Li-Fi can potentially be directed and beamed at a particular user in order to enhance the privacy of transmissions," he said.

Backers of Li-Fi say it would also be ideal in places where Wi-Fi is restricted to some areas such as schools and hospitals.

"Li-fi has a place in hospitals because it does not create interference with medical materials," said Joel Denimal, head of French lighting manufacturer Coolight.

In supermarkets it could be used to give information about a product, or in museums about a painting, by using lamps placed nearby.

It could also be useful on aircraft, in underground garages and any place where lack of Internet


 


 

Read More about internet-by-light:

  • Tsonev, Dobroslav; Videv, Stefan; Haas, Harald (December 18, 2013). "Light fidelity (Li-Fi): towards all-optical networking". Proc. SPIE (Broadband Access Communication Technologies VIII) 9007 (2). doi:10.1117/12.2044649.

  • "pureVLC Ltd". Enterprise showcase. University of Edinburgh. Retrieved 22 October 2013.

  • Tsonev, D.; Sinanovic, S.; Haas, Harald (15 September 2013). "Complete Modeling of Nonlinear Distortion in OFDM-Based Optical Wireless Communication". IEEE Journal of Lightwave Technology 31 (18): 3064–3076. doi:10.1109/JLT.2013.2278675.

  1. Philips Creates Shopping Assistant with LEDs and Smart Phone, IEEE Spectrum, 18 February 2014, Martin LaMonica


 

 

READ THIS TECH DOC ON LIGHTCASTING: LiFi News.pdf

The information transfer from a laser satellite will be 90 to 100 times faster than the speed of a home Internet connection, and hours faster than from current satellites.

lightcasting.jpg

By Lonnie Shekhtman, Staff  

The European Space Agency Saturday launched a telecommunications satellite into space from Baikonur, Kazakhstan, that will use lasers to gather information from Earth observation satellites and quickly send it to sensors on Earth. The launch was part of a project known as European Data Relay System, or EDRS, and is the first of several of these data-transfer satellites that will be launched into space in the next several years. The ESA says that its new laser communications network will create what it calls a “SpaceDataHighway,” able to transfer information such as photos and videos from Earth observation satellites, drones, and even from the International Space Station down to Earth at a near real-time speed of 1.8 Gigabits per second. This is 90 to 100 times faster than the speed of a home Internet connection, says the ESA. Recommended: How well do you know the moon? Take our quiz! “EDRS is one of a kind and ESA’s most ambitious telecom programme to date, creating the means for an entirely new market in commercial satellite communications,” the agency said in an announcement. The faster transmission speed will be a boost to responders to disasters, pollution incidents, or illegal fishing or ocean piracy, for example, who could make better decisions with more immediate access to satellite data. "Some important shipping routes go through the North Pole region, where thick-ice [floes] can cause damage to vessels and even threaten human life," Magali Vaissiere, ESA's director of telecommunications told the BBC. "It's also an environment in constant motion which means that data that is two days old is not only unhelpful – it could even be unsafe,” she said, referring to the limitations of traditional radio satellites. Current satellites in low Earth orbit are able only to send back the data they collect during their 100-minute orbit time around Earth during a 10-minute window when they have line-of-sight with sensors on Earth. ESA’s first optical satellite will remain in a stationary position higher in space (same as television satellites) than other satellites, about 36,000 kilometers (nearly 23,000 miles) from the Earth's equator and above Europe. It will collect data from this location and relay it down to European ground stations, avoiding the time delay when other Earth observation satellites have to wait for “line of sight” with ground stations, says the ESA. EDRS laser technology was developed by German satellite builder Tesat, a subsidiary of French aerospace company Airbus at a cost of 500 million euros. The laser terminal will be tested over the coming weeks and months with ground stations in Germany, Belgium, and the United Kingdom, and is expected to be fully operational this summer, when it should start serving its first customer, the European Commission. Over the next several years, ESA plans to discharge two more laser-equipped satellites into space, one over Europe and the other over the Asia-Pacific region. Their biggest challenge, said ESA project manager Michael Witting, will be to get these laser terminals to talk to each other. "It's a laser beam; you have to point it accurately. It's the same as taking a torch in Europe and pointing at a two-euro coin in New York,” Mr. Witting told ArsTechnica. “That's one of the main challenges for developing the laser communication terminal, but also developing the satellite – it has to be stable enough to allow that kind of accuracy," he said. The rise of Wi-Fi and cellular data services made Internet access more convenient and ubiquitous. Now some of the high-speed backhaul data that powers Internet services looks set to go wireless, too.

AOPTIX.png

  Technology that uses parallel radio and laser links to move data through the air at high speeds, in wireless hops of up to 10 kilometers at a time, is in trials with three of the largest U.S. Internet carriers. It is also being rolled out by one telecommunications provider in Mexico, and is helping build out the Internet infrastructure of Nigeria, a country that was connected to a new high-capacity submarine cable from Europe last year. AOptix, the company behind the technology, pitches it as a cheaper and more practical alternative to laying new fiber optic cables. Efforts to dig trenches to install fiber in urban areas face significant bureaucratic and physical challenges. Meanwhile, many rural areas and developing countries lack the infrastructure needed to support fiber, says Chandra Pusarla, senior vice president of products and technology at AOptix. He says a faster way to install new capacity is to use his company’s wireless transmission towers to move data at two gigabits per second. Pusarla says the service is particularly attractive to wireless carriers, whose customers have growing appetites for mobile data. Many U.S. providers are currently scrambling to install fiber to replace the copper cables that still link up around half of all cellular towers, he says, but progress has been slow and costly. In the suburbs of New York City, the cost of installing a single kilometer of new fiber can be $800,000, says Pusarla. AOptix technology takes the form of a box roughly the size of a coffee table with an infrared laser peering out of a small window on the front, and a directional millimeter wave radio beside it. The two technologies form a wireless link with an identical box up to 10 kilometers away. A series of such connections can be daisy-chained together to make a link of any length. AOptix teamed up the laser and radio links to compensate for weaknesses with either technology used

Share

-

MANAGEMENT: SF BLUES FESTIVAL

SFBLUEScl.png

SFBLUES.jpg

San Francisco Blues Festival Logistics Direction

Scott ran logistics for the San Francisco Blues Festival, working with the Founder: Tom Mazzolini and the Co-Sponsors: The National Park Service. The San Francisco Blues Festival broke the record as the longest continuously operated American music festival in National Park service history.  

BLUES.jpg

SEE THIS VIDEO >>: HTTP://WWW.VIMEO.COM/125657421

7732846_orig.jpg

7843764.jpg

blues84 (2).jpg

SFBF1.png
SFBLUESFEST45.png

Share